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Theoretical equations, in closed form and as expansions in powers of the concentration, have been deduced 
for the enthalpy and entropy parts of the interaction coefficient for solutions of linear high polymers. These 
equations relate experimentally observable quantities to molecular and intermolecular properties. They furnish 
a reasonable basis for the approximately opposite concentration dependence of the enthalpy and entropy func
tions. It is expected that these results will prove useful in connection with various properties of polymer solu
tions and gels at intermediate and high concentrations. 

Introduction 

This paper reports an extension of the theory of the 
thermodynamic properties of solutions of long-chain 
polymers, previously deduced by the author . 2 - 7 I ts 
chief aims are to relate experimentally measurable 
quantities as closely as possible to molecular struc
tures and intermolecular interactions and to obtain 
equations which will give more quantitative agreement 
with experiment than do previous theoretical equations, 
especially at moderate and high concentrations of 
polymer. The present paper deals exclusively with 
the theory. Application of the results to experimental 
data is in progress and will be reported later. 

Following previous theoretical developments by the 
writer ,2 - 7 Flory,8^10 and others, the partial molal Gibbs 
free energy of mixing of the solvent, in a solution of 
linear polymer of a single type in a single solvent, is 
given by the equation 

Ai7! = RT In 0, + [ 1 - ~ )<fc + x«22 (D 

Here, Vi and P2 are the partial molal volumes of sol
vent and solute, respectively, </>i and <£2 are their volume 
fractions in the solution, and x is a parameter, which 
depends on the solute and solvent and the tempera
ture, but not appreciably on the molecular weight of 
the polymer, as long as it is high. It does depend 
on the concentration, but approaches constancy as the 
concentration (i.e., fa) approaches zero. Various ex
perimentally measurable quantities of interest can be 
related to AFi and so to x- Considering x as concen
tration dependent is of course equivalent to expanding 
eq. 1 into a series, with additional terms x'<t>23< x"<t>t3, 
etc. 

The problem to be solved is the quantitative evalua
tion of x, including its concentration dependence, in 
terms of molecular and intermolecular properties. 

(1) Except for minor changes and addi t ions , th is theory was developed 
while t he au tho r was on the staff of t he Research Labora tor ies of t h e Eas t 
man Kodak Co., Roches ter , N. Y He is now on the staff of Stanford Re
search Ins t i tu te , Menlo Park , Calif, A pre l iminary repor t of th is work was 
presented at the sympos ium honoring Prof. Joel H. Hi ldebrand on the occa
sion of his 80th b i r thday , Berkeley, Calif., Sept 12, 1961, 

(2)- M. I.. Huggins , J. Phys. Chem.. 46, 151 (1942). 
(3) M. L. Huggins , Ann. N. Y. Acad. Set.. 4 1 , 1 (1942). 

Huggins, J. Am. Chem Soc, 64, 1712 (1942). 
Huggins , J. Phys Colloid Chem.. 52, 248 (1948). 
Huggins, J. Polymer Set., 16, 209 (19.55). 

Huggins , "Phys ica l Chemis t ry of High Po lymers , " John Wiley 
and Sons, Inc. , New York, N', Y., 1958, Chap te r 6, 

(8) P. J. Flory, J. Chem. Phys.. 10, 51 (1942). 
(9) P, J, Flory, ibid.. 12, 425 (1944), 
(10) P. J, Flory, "Pr inc ipa ls of Polymer C h e m i s t r y , " Cornell Univers i ty 

Press, I t haca , N. Y., 1953 

(4) 
(5) 
(6) M. 
(7) M, 

I t is known that x i s a function of both the enthalpy 
and the entropy of the solution. It is convenient for 
our purpose to write 

x = Xh + Xs (2) 

and to consider the enthalpy contribution, Xh, and the 
entropy contribution, Xs, separately. 

Theoretical Development: Enthalpy and Energy 
Rather than dealing with the enthalpy of mixing 

directly, it is simpler to deal first with the energy of 
mixing, assuming zero volume change on mixing, and 
then, following Hildebrand and Scott,11 to estimate the 
corrections for volume change by means of the relation
ships 

AFi = AAi (3) 

AZZ1 = A-Si(I + aBT) (4) 

Here, AAi is the Helmholtz free energy of mixing and 
as is the coefficient of cubical expansion of the solution, 
approximated by 

a8 = ai<t>i + a202 (5) 

We are concerned with the energy of molecular inter
actions in a solution of chain molecules, and with the de
pendence of that energy on the molecular properties and 
on the concentration. Except when Coulombic forces 
are involved, it seems reasonable to consider the molecu
lar interaction energies as depending solely on the 
"contacts" between adjacent molecules. To put this 
concept on a quantitative basis, we consider that each 
molecule has a molecular surface of definite but un
specified area and that the interaction energy associ
ated with contact between two adjacent molecules de
pends on the kinds of molecules and on the area' of 
mutual contact. I t is of course necessary to deal with 
averages and to make allowance for intramolecular con
tacts and for the portions of the surface areas of mole
cules which are not in contact with surface areas of the 
same or other molecules, and to allow for departures 
from perfect randomness of mixing, resulting from 
differences in the interaction energies between different 
types of pairs of molecules. 

We designate by <jx and 0-2 the average "molecular 
surface areas" of solvent and solute (polymer) mole
cules, respectively. By un, "12, and erio we designate 
the average surface areas per solvent molecule which 
are "in contact" with other solvent molecules, solute 
molecules, and nothing, respectively. By o-2i, cr22int 

C22,ext, and (T20 we denote the average surface areas of a 
(11) J H. Hi ldebrand and R. I. Scott , "Solubil i ty of Nonelec t ro ly tes , " 

3rd Ed. , Reinhold Publishing Corp , New York, N Y.. 1 »•">(> 
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solute molecule in contact with solvent molecules, 
other portions of the surface of the same solute polymer 
molecule, other solute molecules, and nothing, respec
tively. Then 

Cl ClI + C12 H - (TlO 

0-2 C21 + C22, int H - C 2 2 ,ext H - C20 

(6) 

(7) 

We assume alt c2, trio, and cr20 to be independent of 
concentration. Also, although it is likely tha t <r22,int 
varies with concentration in some instances, we neglect 
such variation and take it also as constant. We can 
then define the "effective surface areas," u / and <j2', 
by the equations 

<y\ 

(J2 = (72 

Cl ~ ClO — C n + (Tl (8) 

C20 C22,int — C2i + C 2 2 , ex t ( 9 ) 

If TVi and TV2 are the numbers of solvent and solute 
molecules in the solution, respectively 

A V n = A W (10) 

Leaving out of consideration all the internal ener
gies of the molecules which should be independent of 
concentration, the energy of the solution is the sum of 
the energies of intermolecular contact. Wre designate 
by en, 622, and t21 the average interaction energies per 
unit area of contact, for the three types of intermolecu
lar contact. These should each be independent of 
concentration at a given temperature. (For inter
molecular attraction, these are negative.) 

Let p21 and 2̂2.ext be the probabilities that a small 
area of the surface of a polymer molecule, which is in 
contact with another molecule, is in contact with a 
solvent and with another solute molecule, respectively. 
If the two types of molecule were similar in size, shape, 
rigidity, and intermolecular contact energy (i.e., e2i = 
C22), we should expect these probabilities to be propor
tional to the available molecular surface areas of the 
two types. Hence 

C22,ext 

C21 

AW 
(H) 

If, however, the solute molecules are flexible linear 
polymer molecules, the presence of one contact be
tween such molecules increases the probability of two 
or more contacts. To allow for this we may insert a 
"multiple contact factor," kmc, in the numerator on the 
right side of eq. 11. (This factor corresponds to (1 — 
/ ) _ ' in ref. 7. For a fuller discussion, see ref. 6, pp. 216— 
217.) For present purposes, we assume kmc to be 
independent of concentration. 

For high polymer solutions, another factor, /sh, 
should be included in the numerator of eq. 11 to allow 
for the fact that the interior segments of a convoluted 
molecule are partially shielded from contact with inte
rior segments of other polymer molecules. This may be 
very important in dilute solutions, but the shielding 
should be negligible in concentrated solutions when the 
polymer molecules interpenetrate each other to a large 
extent. Tentatively, we shall assume the shielding 
factor to depend on concentration according to the 
equation 

/.h = 1 - (1 - kA)4>im = kah + (1 - keh)m<t>2 -

(1 — ksh)m(m — 1) 
-W + (12) 

Here, m is an empirical constant and ksh is a constant 
for a given system at a given temperature, approxi
mately unity for low polymers and decreasing as the 
average molecular weight increases. The volume 
fraction of solvent in the solution is related to the 
molecular volumes (V1, V2) by the equation 

N1V1 

N1V1 + N2Vi 
(13) 

At infinite dilution, / s h equals &sh; in pure polymer, / s h 

is unity. 
If the attraction, per unit surface area, between like 

molecules is greater than that between unlike mole
cules, the ratio of eq. 11 should be increased. I t 
seems reasonable to approximate this increase by inser
tion of a factor 

W exp 
KA1 k„Ae 

= 1 + 1-
kBT 

where 

Ae = 2 «21 SlI — «22 

(14) 

(15) 

&B is Boltzmann's constant, T is the absolute tem
perature, and k, is a factor that depends on chain 
flexibility and other structural features. We thus have, 
for polymer solutions 

C22 ,ext 

(J21 N1(J1 

From this and eq. 9, one readily obtains 

(J2 N1(J1 
(J21 

N1(J1' + A W / W s h W ' 

(16) 

(17) 

The energy of mixing N1 molecules of solvent with Â 2 

molecules of solution is 

- ^ so lven t ^ s o l u t e 

[A^l(O-Hen + C l 2 ^ l 2 ) H- A 7 ^ ( T 2 2 , ext «22 + 

A-C,mix — ^--solutio 

C2l«2l)] - N1(^t11) ~ N2((J2'e22) } (18) 

N2(J21At 

Substitution of eq. 17 into eq. 18 gives 

N1N2(J1 (J2 
^i-C'mix ' 

2(AV/ + AWWhWO 
(19) 

The partial molal energy of the solvent is related to the 
energy of mixing by the equation 

AE1 = 7VA 
(dAEmi 

\ M1 
(20) 

where A7A is Avogadro's number. 
Performing the indicated differentiation yields the 

result 

AE1 
N^a^k^WA^AU + m(l -/9h)4>2 

2 l ' 2 2 C l ' 1 -
V1IJ2 

V2(J1 

-kmJahW U 

(21) 
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The ratio of molecular volumes, V1Zv^ can reasonably 
be taken equal to the ratio of partial molal volumes and 
to the ratio of contacted molecular surface areas 

Vi Vi Ui + CT22,int 
(22) 

Then 

AE1 = 

or 

A^A Vl<72&ext&mc WAefa* [fah + w ( l - fah)<f>i) 

2 F 2 [ I - (1 - ke*tkmcfBhW)4>i}* 

AE1 = AE1' 
1 + m { — — - J02 

/ s h 

. [ 1 - ( 1 - / f ea t femJ ' .hWO*. ] ' ; 

with 

and 

AE1
0 = 

A7A Vl(Ti kextkmok3hWA(:())2 

2Vi 

f^ext 
Oi 

(Ti — C2Q 

(23) 

(24) 

(25) 

(26) 

which equals the average fraction of contacted polymer 
molecule surface which is in contact with portions of 
other molecules. 

Expansion of eq. 24 in powers of fa gives the series 

AE1 = AE 1
0 ^ l + 

2&ext£mcW'r£sh 

2m 
2 - 2m + 

«sh 

<t>2 + 

3
 2 ^ 9 

2 2 
+ esh 

( m i _ m + 3 _ 6mkextkmcW) + (6m -

6 ) U - . ^ + 3yfeext2/femcW^9h
2 022 + . . . 

(27) 

From eq. 4 and 24, the enthalpy contribution to the 
interaction coefficient x is deduced to be 

W1 J /8h 
Xh = „ „ „ , = Xh° < i?ry2

2 

l*.h[l - (1 - 4.Xt^cAhH7)*!!2) 

= Xh0 + Xh '01 + 

where 

Xh0 YL 
2V, 

KWL(I + a,T) 

(28) 

(29) 

(30) 

Xh' = 2Xh°(l + aBh - KW) (31) 

Xh" = 3xh 
'( 3 ma,h \ 
L V 1 + 2 a s h 2 J -

2(1 + aA)KW + (KWY 

iV "ext^mc^sh 

<72 Ae a r 

L = = — 

(32) 

(33) 

(34) 

and 

«sh = W 
\£sh / 

(35) 

The function Xh0 is the same as Flory's "heat parame
ter," K1 (see ref. 10, p. 522). 

Theoretical Development: Entropy 
The entropy with which we are concerned is related 

to the randomness of placing of the molecules and 
molecular segments in the solution. I t is convenient 
to consider each polymer molecule as composed of wr like 
rigid segments. We imagine these molecules as being 
placed in the volume, V, to be occupied by the solution, 
one segment at a time for the first molecule, then one 
segment at a time for the second molecule, and so on 
until all the Ni polymer molecules have been placed. 
The TV1 solvent molecules (presumed to be rigid) are 
then hypothetically inserted one at a time. 

The entropy (S) of the solution is related to the 
randomness of placing of the polymer segments and 
solvent molecules by the equation 

= In^ 

N, N, n, 

n >«• n 11 * 
» - 1 1 - 1 j = 2 l 

N2] N1] 

n (36) 

Here, vit designates the randomness of placing the first 
rigid segment of the t'th solute molecule, vu denotes the 
randomness of placing the j t h rigid segment (with j > 1) 
of the i th polymer molecule, and v, represents the 
randomness of placing the /th solvent molecule. 

The randomness of placing the first segments can be 
expressed by the relationship 

1 — &2Z>2 — =fc higher terms (involving 

V1 ' Vi etc. (37) 

with Vx representing the volume of the segment, equal 
to Vi/nT if all segments are alike, and with ki a constant, 
of the order of magnitude of a small integer, which repre
sents the average ratio of the volume excluded from 
occupancy by the center of the segment being placed, 
as a result of the presence of an already placed polymer 
molecule, to the volume actually occupied by that 
placed molecule. 

Equation 37 can also be written 

Vu = 
NjHr 

4>i Af2" 
i ± terms involving 

®' etc. (38) 
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From this 

Ni 

In I I v,i= N2 In TV2 + /V2 In nT - N2 In <f>2 + 
i = i 

1 , ' " ( ' -^ (39) 

For large N2 

ZH1 -us* 
J° \ N2 

)di (40) 

It can be shown that for flexible high polymers the 
higher terms in the expansion are negligible. Then 

Nj(I- kfa) 

k2<(>2 

k2N2 

In (1 - k2<fi2) (41) 

02 ± terms involving 

4>2\ etc. (42) 

For the solvent molecules, to a sufficient degree of 
approximation 

- 1 

" = ~ V ~ ~ V N1 

N1[I-
- 1 

= N1 - I + 1 (43) 

Hence 

In I f V1 = ln M ! = Â i In N1 - N1 (44) 

The randomness of location of each rigid polymer 
segment, other than the first, is just its randomness of 
orientation relative to the preceding segment. This 
randomness is, of course, reduced by blocking by sol
vent molecules, other segments of the same polymer 
molecule, and other polymer molecules. Let us define 
v° as the average randomness of orientation of a rigid 
segment of a solute molecule in infinitely dilute solu
tion, i.e., in contact only with solvent molecules and 
other portions of the same polymer molecule. (It will 
be recalled that we have assumed that the chance of 
contact with another portion of the same molecule 
does not change with the concentration). The averag
ing is over all values of j , as well as over all configura
tions of the polymer molecule, all distributions and 
orientations of neighboring solvent molecules, etc. 

At finite concentrations the average randomness of 
orientation is changed (usually reduced) from the value 
Vi by the presence in the vicinity of (i.e., blocking by) 
other polymer molecules. It seems reasonable to 
assume that the blocking effect (averaged for any seg
ment of the ith molecule) is proportional to the frac
tion of noninternally contacted surface which is in 
contact with other polymer molecules, that is, to the 

ratio a22,ext/cr2', computed from eq. 9 and 17 with 
substitution of i for TV2. Thus 

vlt = V1Kl ~ Kp1) 

_ l<722,ext\ _ I Vl ~ 021 \ _ / C21 \ 

V Cr2' Ii \ U2 Ji \<J2')\ 

(45) 

V21 kmcfehWi ''U 
UWi t , „ / i 1 + *PU 

where ks is a proportionality constant and 

(46) 

C 2 

Kp = — kmof,hW 
Cl 

(47) 

Hence 

in n n"« 
t = 1 j = 2 

= (n, - I)N2 In »0 + (n, - 1) £ In (1 - k.pt) 
i = i 

= (nT - I)N2 In v° + 

In 1 
N1 

= (nr - I)N2 In v° + («, - 1 ) 

^1 - 1 In Tl + (1 - ks) 

1 + ^ N1 . 

N2 + 

KnN2 

di 

(1 - kt)K, 

N2 + 

N1 m i + 
KPN2 

N1 

(48) 

For large TV2 and N1 

InN2I = N2 In N2 - Ni (49) 

In N1I = M I n N1 - N1 (50) 

Substitution of eq. 39, 41, 44, 48, 49, and 50 into eq. 36 
gives 

5 „ , A7 . N2(I - k24>2) In (1 - k^>2) 
— = N?lnnr— N2 In <j>2 — ' 

(nr - I)TV2 In v° + (nT - 1) 

N1 

(1 - kt)Kv 

(nT - 1) 

In 1 + (1 - *.) 

k2(f>2 

N2 + 

K2N2 

N1 . 

*+£M'+^) (51) 

The partial molal entropy of mixing of the solvent is 
given by the equation 

^ i = NJ^-[S- SN, = 0 'KdN1 
JJVj = 0 

«m,» 
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where R is the molal gas constant. Making use of the 
relation 

XZNJN, 

t>1022 

V2N2 V2Ni 
(53) 

we deduce 

AS1 V1 In (1 - k2<t>2) 

R k2V2 + 
1 + OT 

V /.h 
1̂ 2 

(In [1 + (1 - W U m ^ W * i l - ) 
^ (1 - fe.) In (1 + k^kr^UWfr/fr) \ (54) 

Expansion in powers of 4>2 leads to 

AS1 /VV 

R V 
l</>2 + 

.2V2
 K ' V22 W + 

2m 
2 - 2w + T - + 

n-sh 

^v1 / A n ; 

(^-^KW^tf+ ••• (55) 

One would expect k2 to be of the same order of mag
nitude as KW. Therefore, for large wr, the terms in
volving k2 can be neglected. Also, nT — 1 can be re
placed by « r . Hence we put 

AS1 V1 «r7K/.2r -

T = J2^
 + ~v^; L1 + w( ~ (1^K x 

(In [1 + (1 - * . )A .x tW.hWW*i] - ) 
< (1 - k.) In (1 + feextfemo/'hW'Wfr) > (56) 

Referring back to eq. 1 and 2, we can relate ASi to x> 
by means of the equation 

AS1 = -R In ^1 + M - ~ V + Xs«22] (57) 

I t is now convenient to define an "entropy parameter," 
\pa, by means of the relationship 

(58) 

W <t>2
2\R V2 J \ 022 / 

/ 1 02 022 \ 
= V 2 + 3 ^ + T + - ' - j - X s 

This parameter is equivalent to Flory's "entropy 
parameter," ^1 (see ref. 10, p. 522), if all terms except 
the first, in the series expansion in eq. 58, are negligible. 

From eq. 56 and 58, we obtain 

4rM x 
V1 i r 

V2 01<P2 _ 

(In [1 + (1 - W£„ t A m c / .hWV^i ] - ) 
I (1 - k.) In (1 + k x t W - h W W f r ) \ (59) 

\ ( I - ks)kextkmcj"»bW<t>t/4>l J 

Expanding into a series in powers of the volume frac
tion of polymer 

* . = W + Wfr + W<t>i2 + ••• (60) 

with 

W = 
V1KWKn, 

2V2 

and 

W = 2 ^ / 1 + a8h + (~^\KW 

( 
3 w a s h \ 2 

l + 2 a s h - - r j + 3 ( - 2 

£8c*8h + 2ks }KW + 
1 ks k 2 \ 

+ T!- J {KWY 

(61) 

(62) 

2aSh + 

(63) 

The Interaction Coefficient and Its Temperature 
Dependence 

I t has been customary to assume that one can sepa
rate the interaction coefficient into a temperature 
independent part and a temperature dependent part, 
according to the equation 

(64) 

and then to identify these parts with the entropy and 
enthalpy contributions, Xs and Xh (see eq. 2). From 
the theory presented here, however, ^8, and hence Xs, 
should depend on temperature, since the factor W, 
which enters into the expressions for i^s°, ips', etc., is 
temperature dependent (see eq. 14). Of course, if the 
product k,bt is sufficiently small relative to ksT, the 
temperature dependence of Xs may be negligible. 
Nevertheless, it would seem worthwhile to transfer the 
temperature dependent part of Xs to the other com
ponent part, so obtaining theoretical expressions for 
the temperature independent and temperature de
pendent components, which can be readily measured 
experimentally. This has been done, neglecting all 
terms in powers of I/T higher than the first, with the 
following results. 

- I n <t>x 4>i 

022 - *a 

+a = ^" + *.'*, + ^0 "02* + 

V1Kk3H1 
W = 2 72 

W = Wa 
r 

(i + - ( H - 2 ) K 

(65) 

(66) 

(67) 

(68) 

* . " = 3*.« 
3 ma,h\ 2 , 

l + - « 8 h - — J + - ( - 2 - 2ash + 

bx = bx° + bx'<t>2 + bx"<tf + ... 

V1K 
V = TTjTaL(I - /S)(I + a . r ) 

Z V2 

V = 26»<1 + <*sh - K 3 3 ' 

1 - /3 

(69) 

(70) 

(71) 

(72) 
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K" = 3V 
waSh 2(1 + ash)K X 

1 + 
2a9h + k3ash + 2kt 

1 + ash 

K2 

1 - 8 

1 - /3 

The 8 in eq. 71-73 is denned by the equation 

C2 

+ 

(73) 

(74) 

It is possible that some of the quantities assumed 
in the foregoing derivations to be independent of tem
perature do in fact vary with the temperature. If so, 
appropriate adjustments must be made in these rela
tionships. 

The functions deduced for Xh and ^8 show a very 
similar dependence on concentration. (Compare eq. 
28 with eq. 59, also 31 with 62 and 32 with 63). There
fore Xh a n d Xs should vary oppositely, a behavior that 
has often been noted empirically. In certain systems 
the relationship is approximately a rectilinear one.7 '1213 

The accuracy of the rectilinearity probably depends 
on the magnitudes of certain of the parameters. 

Correlation with Experiment 
From precise experimental data one can determine 

X and its dependence on concentration and tempera
ture, hence values of \pa°, bx°, and the ratios \f/a'/^ °. 
W/ta0, bx'/bx

a, and bx"/bx°. If /3 is negligible, one 
(12) H. T a k e n a k a , J. Polymer Set., 24, 321 (1957). 
(13) G. Rehage and H. Meys , ibid., SO, 271 (1958). 

can use these ratios and eq. 68, 69, 72, and 73 (putting 
8 = 0) to deduce the remaining four unknowns in 
these equations: K, asn, ks, and m. From eq. 35, one 
can obtain &sh. Equation 12 will then give /Sh as a 
function of the concentration. Equation 67 will yield 
»r and eq. 71 will give o?L (assuming that a, has been 
estimated by means of eq. 5). From K and &sh, one can 
(eq. 33) determine the product kextkmci but not the 
individual values of these two factors. Likewise, from 
eq. 34, one can obtain the product 0-2'Ae, but not <T2' and 
Ae separately. 

In this way, one can determine, from experimental 
data, all the constants needed for substitution into the 
closed-form equations for Ai?i and ASi (eq. 28 and 54). 

If 8 is not negligible, the more complicated equations, 
containing this quantity, must be used; another ex
perimental quantity, such as ^ " ' / V a 0 or bx'"/bx°, is 
needed, unless one or more of the "unknowns" can be 
determined or estimated in another way. 

Testing of the equations presented in this paper, us
ing published experimental data, has been begun. The 
results will be reported in due course. If the theory 
and its equations should prove satisfactory, it will be 
possible, from a relatively small amount of experimental 
data, to deduce curves for the variation of the thermo
dynamic properties of polymer solutions up to quite 
high concentrations. (At very high concentrations 
certain other factors6 not considered in the present 
development may become important.) I t is hoped, 
moreover, that the theory will lead to the determination 
of the various molecular constants which affect the 
thermodynamic solution properties and so eventually 
to a better understanding of the phenomena and an 
ability to predict the properties of new systems. 

An extension of this theory to solutions of graft and 
block copolymers has already been published.14 

(14) M. L. Huggins , ibid., C l , 445 (1963). 
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Viscometric Tests of Excluded Volume Theories 

B Y G. C. BERRY AND T. G F O X 

RECEIVED APRIL 15, 1964 

Some aspects of viscometric tests for excluded volume theories are discussed. Attention is confined to 
those systems for which the intrinsic viscosity and the molecular weight are known, possibly as a function of 
temperature. It is concluded that definitive evaluation of the various theories requires data at higher molecular 
weights than normally studied or over a large temperature span. 

Introduction 
It is our purpose here to comment briefly on some 

aspects of viscometric tests for the various theories 
of the excluded volume effect in polymer coils. We 
will restrict our attention to studies for which only 
[•q] and M are known, possibly as a function of tempera
ture. Viscometric studies have recently received 
renewed interest because of new theoretical develop
ments in both the hydrodynamic and thermodynamic 
aspects of the problem. It is an over-simplification 
to consider these aspects separately, but the theoretical 
developments which at tempt to include both effects 
simultaneously are still at an early s tage . 1 - 3 

(1) M. K u r a t a and H. Y a m a k a w a , / . Chem. Phys., 29, 311 (1958). 
(2) O. B. P t i t syn and I. E. Eisner , Zh. Fiz. Khim., 32, 2464 (1958). 

Thermodynamic Effects on the Intrinsic Viscosity 
The molecular description of the hydrodynamic 

flow has been understood in terms of equivalent 
models advanced by Debye and Bueche,4 Kirkwood 
and Risernan,5 and others,6'7 and this description has 
been utilized to form the basis of approximations to 
include thermodynamic (excluded volume) effects.1 '289 

A principle result of the hydrodynamic calculations 
(3) See, for example, the review: A. Peterl in, Makromol. Chem., 84, 89 

(1959). 
(4) P. Debye and A. M. Bueche, J. Chem. Phys., 16, 565 (1948). 
(5) J. G. Kirkwood and J. Risernan, ibid., 16, 565 (1948). 
(6) H. C. Br inkman , Physica, IS , 447 (1947). 
(7) B. H. Zimm, / . Chem. Phys., 24, 269 (1956). 
(8) T. G Fox and P. J. Flory, J. Am. Chem. Soc, 73 , 1904 (1951). 
(9) M. K u r a t a and W. H. Stoekmayer , Advan. Polymer Sci., 3, 196 

(1963). 


